On strongly reflexive topological groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Strongly $H_{v}$-groups

‎The largest class of hyperstructures is the one which satisfies the weak properties; these are called $H_{v}$-structures‎. ‎In this paper we introduce a special product of elements in $H_{v}$-group $H$ and define a new class of $H_{v}$-groups called strongly $H_{v}$-groups‎. ‎Then we show that in strongly $H_{v}$-groups $beta=beta^{ast}$‎. ‎Also we express $theta$-hyperoperation and investigat...

متن کامل

A note on quasi irresolute topological groups

In this study, we investigate the further properties of quasi irresolute topological groups defined in [20]. We show that if a group homomorphism f between quasi irresolute topological groups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connected quasi irresolute topological group $(G,*,tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then...

متن کامل

L-FUZZIFYING TOPOLOGICAL GROUPS

The main purpose of this paper is to introduce a concept of$L$-fuzzifying topological groups (here $L$ is a completelydistributive lattice) and discuss some of their basic properties andthe structures. We prove that its corresponding $L$-fuzzifyingneighborhood structure is translation invariant. A characterizationof such topological groups in terms of the corresponding$L$-fuzzifying neighborhoo...

متن کامل

Some Nasty Reflexive Groups

In Almost Free Modules, Set-theoretic Methods, Eklof and Mekler [5, p. 455, Problem 12] raised the question about the existence of dual abelian groups G which are not isomorphic to Z ⊕G. Recall that G is a dual group if G ∼= D for some groupD withD = Hom (D,Z). The existence of such groups is not obvious because dual groups are subgroups of cartesian products Z and therefore have very many homo...

متن کامل

Reflexive Group Topologies on Abelian Groups

It is proved that any infinite Abelian group of infinite exponent admits a non-discrete reflexive group topology. Introduction For a topological group G, the group G of continuous homomorphisms (characters) into the torus T = {z ∈ C : |z| = 1} endowed with the compact-open topology is called the character group of G and G is named Pontryagin reflexive or reflexive if the canonical homomorphism ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied General Topology

سال: 2001

ISSN: 1989-4147,1576-9402

DOI: 10.4995/agt.2001.2151